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Effect of anisotropy on finite-size scaling in percolation theory
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We investigate the effects of anisotropy on finite-size scaling of site percolation in two dimensions. We
consider a lattice of size n, X n,. We define an aspect ratio w=n,/n, and consider the mean connected fraction
P (averaged over the realizations) as a function of the site occupancy probability (p), the system size (n,),
and this aspect ratio. It is clear that there is an easy direction for percolation, which is in the short direction
(i.e., y if @>1) and a difficult direction which is along the long axis. We define an apparent percolation
threshold in each direction as the value of p when 50% of realizations connect in that direction. We show that
standard finite-size scaling1 applies if we use this apparent threshold. We also find a finite-size scaling for the

fluctuations about this mean connected fraction.
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I. INTRODUCTION

The connectivity of objects in space has many important
applications from the spread of diseases and forest fires to
the connectivity of fracture networks in rocks used for
nuclear waste disposal or for hydrocarbon recovery [2]. Per-
colation theory is the obvious tool to describe such systems,
but they are never infinite or even very large compared with
the size of the connecting objects so we must use finite-size
scaling to describe the connectivity. However, as well as be-
ing finite the shapes or the system, the objects or their ori-
entation is rarely isotropic. For example, in fractured rock,
fracture sets with particular orientations are typically found
[3,4].

There are few studies of the anisotropic behavior in per-
colation. Monetti and Albano [5] used an effective threshold,
which was defined as the point where the probability to find
a percolating cluster is 90% and performed Monte Carlo
simulations in an elongated geometry to obtain the depen-
dency of the horizontal and vertical finite-size percolation
threshold to the aspect ratio of the lattice. Marrink and
Knackstedt [6] have also derived the scaling for the percola-
tion threshold of elongated lattices based on the assumption
that an elongated lattice can be treated as a series of linked
isotropic lattices. They found that their results deviate from
the prediction of Monetti and Albano [5] for aspect ratios
greater than four. Langlands er al. [7] used linear expansion
for the sum of the horizontal and vertical crossing probability
to find numerically the dependency of the crossing probabil-
ity on the aspect ratio of rectangular systems. Hovi and Aha-
rony [8] used the renormalization group theory and duality
arguments to treat the correction to the scaling of spanning
probability for aspect ratio in rectangular systems. They
showed that adding the corrected function is an odd function
of a newly defined variable representing the aspect ratio of
the system, in line with Cardy’s analytical expression [9]
derived based on the conformal field theory. Watanabe et al.
[10] have studied the scaling behavior of the existence
probability (the probability that a system percolates) on the
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two-dimensional rectangular domains with different aspect
ratios. They have pointed out that the nonlinearity in the
derived scaling is because in rectangular domains the corre-
lation function is not isotropic.

In this paper we extend these ideas and show how effects
of anisotropy on the finite-size scaling of connected fraction
P can be incorporated. By isotropy we mean that the hori-
zontal connectivity is the same as the vertical connectivity on
average if not for individual realizations. For anisotropic sys-
tems there will be an easy direction for connected paths to be
formed and a difficult direction. We studied two-dimensional
lattices of size n,Xn, and define an aspect ratio w=n,/n,.
Free boundary conditions in both x and y directions are con-
sidered and various clusters are identified using standard al-
gorithms [11]. Then, in the usual way we investigate perco-
lation properties as a function of the occupancy probability
p. We fix the aspect ratio and investigate finite-size scaling as
the overall system size (now defined by n,) varies. If w>1
then y is the short direction and we expect (and observe)
connectivity to develop in that direction first. Clearly there is
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FIG. 1. Plot of apparent threshold in both the x and the y direc-
tions as a function of n;”", showing that a shift in the apparent

thresholds is symmetrically placed about the isotropic case (w=1).
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FIG. 2. Plot of the shift in the apparent threshold A as a function
of aspect ratio w showing that the proposed scaling function
A(w)=c(w'?~1) is satisfied with ¢=0.92+0.04.

symmetry between connectivity in the x direction for aspect
ratio w and that in the y direction for aspect ratio 1/w. We
shall exploit this symmetry later. We only study the impact of
a moderate aspect ratio for large (but finite) systems. As the
aspect ratio approaches 1/n, the system becomes one dimen-
sional and we would expect to see a crossover to one-
dimensional behavior. In that case the universal scaling ex-
ponents will be changed. The form of variation of the
universal exponents from 2D to 1D values in this regime
needs more investigations. For this reason we restrict our
attention to aspect ratios less than around ten and to system
sizes where the short dimension is greater than around 20.
This demonstrates the effects of anisotropy without getting
into the regime where lower-dimensional behavior is ex-
pected. Here we focus our study to analyze the effects of
aspect ratio in anisotropic systems on the connected fraction
P and its associated uncertainty A. Obviously, there are other
interesting aspects that require further research. One such
area is to investigate the dependency of the scaling function
of backbone or the fractal dimension of percolating cluster
on this aspect ratio.

II. APPARENT PERCOLATION THRESHOLD

We first start by examining the impact of aspect ratio on
the apparent percolation threshold. At a fixed aspect ratio
and system size we generate a large number of realizations
(200 and 2000 for the largest and smallest system size, re-
spectively). We count the number of realizations that form
clusters, which connect from one side of the system in the x
and the y directions. This is equivalent to the second span-
ning rule previously defined by Reynolds er al. [12] where
the cell percolates if there exists a cluster that spans the
lattice in one given direction. The occupancy probability p,
which leads to 50% of realizations connecting in the x direc-
tion we call the apparent x threshold p7, with a similar defi-
nition in the y direction. This implies a special significance
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FIG. 3. Rescaled horizontal P, and vertical P, mean connectiv-
ity curves using infinite threshold for the aspect ratio of (a) w=4
and (b) w=10 where 7 is the isotropic mean connectivity curve.

that the spanning probability of an infinite size system at p,
is equal to % This has been shown by using the
renormalization-group theory [8] and the conformal mapping
[7,9]. As pointed out by Grassberger [13] this is also consis-
tent with the results of bond percolation for which spanning
probability of any finite-size system at p, is % We expect
both of the apparent x and y thresholds to scale with the
system size as

pl=pl + Ao, (1)

where p is the usual infinite system-size percolation thresh-
old (0.59275 for site percolation [1]) and i labels the coordi-
nate direction x or y. Note that the anisotropy does not im-
pact on the infinite percolation threshold because then the
boundaries cannot affect the clusters.

In Fig. 1 we plot the apparent threshold determined in the
x and the y directions for five different aspect ratios as a
function of n;""". This shows that indeed the above scaling
for the apparent threshold is obeyed. We find from these
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FIG. 4. Data collapse using the finite-size apparent threshold for

the aspect ratio of 4 where J is the isotropic mean connectivity
curve.

results that the separation of the apparent thresholds is sym-
metrically placed about the isotropic case (w=1). This
implies, at least to a reasonable approximation, that

Adw) == A, (w). 2)

This symmetry arises in two dimensions because percolation
for the sites in the x direction precludes percolation for
the voids in the y direction (and vice versa). Notice that
this is not true if one uses periodic boundary condition. This
is an approximate symmetry that arises from our choice
of the 50% criterion for the apparent threshold. This
differs from the definition used by Monetti and Albano [5]
who do not see this symmetry. This means that we can
define a single function A(w) such that 5*—p7~=A(w)n; "
and pY—p=—A(w)n;".

Owing to the symmetry mentioned above (swapping x
and y) labels we must have that pi(w)=p.(1/w) or
A(w)n;””:—A(l/w)n;””. This indicates that A(w) has the
following property:

Alw) =- 0" A(l/w). (3)
Neglecting a very small finite-size shift in the threshold for

the isotropic case [A(w=1)=0], one simple scaling function
that satisfies this is

Alw) = (w0 -1). 4)
In Fig. 2 we plot A against @”’~1 and find that there
is reasonable agreement with this conjecture. Having
obtained the aspect ratio dependency of the apparent thresh-

old, we are now able to investigate the finite-size scaling
transformations.

III. SCALING OF MEAN CONNECTIVITY

We expect the average connected fraction (P) to follow
standard finite-size scaling [1]. In Fig. 3(a) we plot nf’”P
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FIG. 5. Rescaled horizontal A, and vertical A, standard devia-
tion of connectivity curves using the infinite threshold and aspect
ratio of (a) w=4 and (b) w=10 where R is the isotropic standard
deviation of the connectivity curve.

against (p—p2)n!"" for a fixed value of the aspect ratio of 4.
We find that indeed the curves do collapse, however, the
vertical and horizontal connectivity curves are separated as
we would expect. As the aspect ratio increases this separation
increases [Fig. 3(b) for aspect ratio of 10].

However, if instead of the infinite percolation threshold
we use the finite-size effective threshold as discussed above
we find that the curves collapse onto a single curve as shown
in Fig. 4.

Similarly, we can rescale the standard deviation of the
connectivity A=/(P—P)? with the usual finite-size scaling
law (Fig. 5). Again the vertical and horizontal connectivity
curves are displaced about the isotropic curve. As the aspect
ratio increases, both the separation and the magnitudes of the
curves increase. To bring the standard deviation of the con-
nectivity curves back to the isotropic curve we have to use
the finite-size apparent threshold as discussed above as well
as a change in magnitude, which can be accounted for
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FIG. 6. Data collapse using the finite-size apparent threshold for
the aspect ratio of 4 where ‘A is the isotropic standard deviation of
the connectivity curve.

by rescaling with the geometric mean length, (n,n,)2. From
the derivation of the variance in connectivity and its relation
to the variance in the cluster size as S/n? where n? is the
area in 2D isotropic systems, one might use nxny=w‘1n)2( to
represent the area in anisotropic systems. This introduces a
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prefactor w'/? in the scaling law of the standard deviation of
connectivity as

A(p,n, ) = 00 PR(p - p)n,"]. (5)

The results of data collapse are shown in Fig. 6, which
indicates that this improves the fit in the standard deviation
of connectivity results although it is not perfect. These re-
sults enable us to use the same isotropic universal curves (J
and fR) for predicting the connectivity of anisotropic lattices,
which is a good enough approximation for engineering
purposes.

IV. CONCLUSIONS

In conclusion, we have shown that we can account for
moderate anisotropy in finite-size scaling within percolation
by first considering the apparent threshold for connectivity in
the principal coordinate directions of the anisotropy. We can
then include this within the usual finite-size scaling rules.
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